17 research outputs found

    Minimization of power loss in newfangled cascaded H-bridge multilevel inverter using in-phase disposition PWM and wavelet transform based fault diagnosis

    Get PDF
    AbstractNowadays multilevel inverters (MLIs) have been preferred over conventional two-level inverters due to reduced harmonic distortions, lower electromagnetic interference, and higher DC link voltages. However, the increased number of components, complex PWM control, voltage-balancing problem, and component failure in the circuit are some of the disadvantages. The topology suggested in this paper provides a DC voltage in the shape of a staircase that approximates the rectified shape of a commanded sinusoidal wave to the bridge inverter, which in turn alternates the polarity to produce an AC voltage with low total harmonic distortion and power loss. This topology requires fewer components and hence it leads to the reduction of overall cost and complexity particularly for higher output voltage levels. The component fault diagnostic algorithm is developed using wavelets transform tool. Finally an experimental prototype is developed and validated with the simulation results

    Modeling and Control of Power Converter for Doubly Fed Induction Generator Wind Turbines using Soft Computing Techniques

    Get PDF
    This paper is based on Fuzzy Logic Controller (FLC) Control of Doubly Fed Induction Generator (DFIG) wind turbine in a power system for nonlinear loads. By which the nonlinear system can be made to work as a linear system to bring out better performance. . Fuzzy logic is a logical system which provides definite solution to solve problems. It process with fuzzy variables which are defined by membership functions. The combined action of PI and FLC controls the switching actions, distortion in harmonics and provide compensation for unbalanced load if any at the point of common coupling. The proposed system consists of back to back connected converters, one is connected to the generator side and the other is connected to the grid side. The grid side connected converter is used for compensation ie, it act as an Active Power Filter (APF) and compensator hence the cost of using APF is reduced. Reduced Total Harmonic Distortion (THD) is obtained by simulating (MATLAB/SIMULINK) the performance and the result is found to be quite satisfactory. Key Words: Fuzzy Logic Controller, Harmonic Reduction, Power converter, Renewable Energy

    A survey of mindset theories of intelligence and medical error self-reporting among pediatric housestaff and faculty

    Get PDF
    RĂ©fĂ©rence bibliographique : Rol, 107037Appartient Ă  l’ensemble documentaire : Pho20RolImage de press

    Distributed optimal congestion control and channel assignment in wireless mesh networks

    Get PDF
    Wireless mesh networks have numerous advantages in terms of connectivity as well as reliability. Traditionally the nodes in wireless mesh networks are equipped with single radio, but the limitations are lower throughput and limited use of the available wireless channel. In order to overcome this, the recent advances in wireless mesh networks are based on multi-channel multi-radio approach. Channel assignment is a technique that selects the best channel for a node or to the entire network just to increase the network capacity. To maximize the throughput and the capacity of the network, multiple channels with multiple radios were introduced in these networks. In the proposed system, algorithms are developed to improve throughput, minimise delay, reduce average energy consumption and increase the residual energy for multi radio multi-channel wireless mesh networks. In literature, the existing channel assignment algorithms fail to consider both interflow and intra flow interferences. The limitations are inaccurate bandwidth estimation, throughput degradation under heavy traffic and unwanted energy consumption during low traffic and increase in delay. In order to improve the performance of the network distributed optimal congestion control and channel assignment algorithm (DOCCA) is proposed. In this algorithm, if congestion is identified, the information is given to previous node. According to the congestion level, the node adjusts itself to minimise congestion

    Virtual worlds in Australian and New Zealand higher education: Remembering the past, Understanding the present and imagining the future

    Get PDF
    3D virtual reality, including the current generation of multi-user virtual worlds, has had a long history of use in education and training, and it experienced a surge of renewed interest with the advent of Second Life in 2003. What followed shortly after were several years marked by considerable hype around the use of virtual worlds for teaching, learning and research in higher education. For the moment, uptake of the technology seems to have plateaued, with academics either maintaining the status quo and continuing to use virtual worlds as they have previously done or choosing to opt out altogether. This paper presents a brief review of the use of virtual worlds in the Australian and New Zealand higher education sector in the past and reports on its use in the sector at the present time, based on input from members of the Australian and New Zealand Virtual Worlds Working Group. It then adopts a forward-looking perspective amid the current climate of uncertainty, musing on future directions and offering suggestions for potential new applications in light of recent technological developments and innovations in the area

    Genetic algorithm based solution in pwm converter switching for voltage source inverter feeding an induction motor drive

    No full text
    This paper presents an efficient and reliable Genetic Algorithm based solution for Selective Harmonic Elimination (SHE) switching pattern. This method eliminates considerable amount of lower order line voltage harmonics in Pulse Width Modulation (PWM) inverter. Determination of pulse pattern for the elimination of some lower order harmonics of a PWM inverter necessitates solving a system of nonlinear transcendental equations. Genetic Algorithm is used to solve nonlinear transcendental equations for PWM-SHE. Many methods are available to eliminate the higher order harmonics and it can be easily removed. But the greatest challenge is to eliminate the lower order harmonics and this is successfully achieved using Genetic Algorithm without using Dual transformer. Simulations using MATLABTM and Powersim with experimental results are carried out to validate the solution. The experimental results show that the harmonics up to 13th were totally eliminated

    Minimization of power loss in newfangled cascaded H-bridge multilevel inverter using in-phase disposition PWM and wavelet transform based fault diagnosis

    No full text
    Nowadays multilevel inverters (MLIs) have been preferred over conventional two-level inverters due to reduced harmonic distortions, lower electromagnetic interference, and higher DC link voltages. However, the increased number of components, complex PWM control, voltage-balancing problem, and component failure in the circuit are some of the disadvantages. The topology suggested in this paper provides a DC voltage in the shape of a staircase that approximates the rectified shape of a commanded sinusoidal wave to the bridge inverter, which in turn alternates the polarity to produce an AC voltage with low total harmonic distortion and power loss. This topology requires fewer components and hence it leads to the reduction of overall cost and complexity particularly for higher output voltage levels. The component fault diagnostic algorithm is developed using wavelets transform tool. Finally an experimental prototype is developed and validated with the simulation results. Keywords: Field programmable gate array (FPGA), In-phase disposition (IPD) PWM, Least number of switching devices, Multi level inverter, Total harmonic distortion, Wavelet transform too
    corecore